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Abstract

In this paper we will see that we can avoid the concepts of negative number and complex

number thanks to the study of the underlying vector nature of some arithmetic and polynomial

problems. We will see that the geometrical models used until now to represent negative numbers

and complex numbers and their operations are not just interpretations or models. Translations,

rotations and homotheties are what we need to solve several problems. We will see that what

we call "negative numbers" and "complex numbers" are just the solutions of vector calculations

and equations. All that is the consequence of the fact that geometrical considerations are

unavoidable when we think about debts and gains and when we try to solve some polynomial

equations. We will see that thanks to the solutions of those vector equations we can construct

paths in the plane. We will also give the vector meaning of the formulas of De Moivre and

Euler. An interpretation of the vertical axis linked to gains and losses will also be given.

1 Introduction

The use of negative numbers began in China and India many ceturies ago and they were used
in Europe from the Middle Age (see [Smith2001] ). The study of the equations in Europe lead
to the apparition of complex numbers because of the square root of negative numbers needed to
solve some equations. Ra�ael Bombelli constructed those numbers in 1572 (see [Katz2009], p 404
). Between the end of the 18th and the beginning of the 19th century, several mathematicians
as Jean-Robert Argand or Gauss found geometrical interpretations of complex numbers. But, as
for negative numbers, many mathematicians were not satis�ed with "imaginary numbers" even if
there are geometrical interpretations. In this paper we will see that actually there are no imaginary
numbers. We will see that several arithmetical and polynomial problems are in fact geometrical
problems which lead to solutions that are geometrical operations. Those geometrical operations
have been considered as complex number until now.

2 Representing gains, losses and debts in Ancient China and India

They used rods with two colors. Red rods for gains and black for losses. We can see the descriptions
of the calculations in the "The Nine Chapters on the Mathematical Art" commented by Liu Hui
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(see [Kangshen2000]). There were rules for addition and substraction as the nowadays rules (see
see [Mumford]).

They counted 1 unit of gain, two units of gain, etc. And 1 unit of loss, 2 units of losses, etc..
Jean-Claude Martzlo� explains that those negative numbers were used only as computational

intermediates (see [Martzlo�2006], p. 200).
He explains also that "the Chinese from antiquity had a predilection for an analysis of all sorts of

phenomena in terms of complementary couples, positive or negative" (see [Martzlo�2006], p. 200).
Symmetries were also important for them.

In India negative numbers were used to represent debts (see [Smith2001], [Mattessich1998] and
[Brahmagupta]).

3 The geometrical nature of losses and gains

So there was an underlying idea of symmetry in China. There were losses, a state of equilibirum,
and gains. That is geometrical.

There was a geometrical underlying structure of negative numbers, but, as far as we know,
Indians and Chinese were not aware of that.

It is now clear that there is a link between negative numbers and the number line thanks to
Descartes' representation of numbers. But in the number line, negative numbers are just represen-
tations. They are positions in the number lines, More precisely, they are labels of points in the
number line.

"-5" is a label, for example. It's not a really a number. We should talk about units of debt, for
example: 1 unit of debt, 2 units of debt. etc. Those quantities of losses or gains car be represented
as in �gure 1:

Figure 1: Representation of the number of units of gains and losses

So there are no really negative numbers. We count, with natural numbers, the number of units
of debts, or the numbers of units of length from the middle of the line to the left. And we use labels
as "-5" to indicate a position on the line. We use it also for counting the units of debts. Obviously,
we can also use magnitudes on the line. For exemple "-4.25" represents also a point on the line
between the points represented by "-5" and "-4".

There has been studies about it made by cognitive scientists (see [Lako�Núñez2000]) who recall
the underlying geometrical nature of negative numbers and the importance of that fact for education.

So, that is why the complex numbers are linked to geometrical operations. In fact there are no
complex numbers as we will see below. What we have are just geometrical operations who appear
because of the use of negative labels when we try to solve certain polynomial equations.
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4 Working with negative labels and vectors

During the last 2 centuries, mathematicians have developped the techniques of the euclidean vector
space. Those techniques with vectors have integrated the use of negative numbers with their di�erent
operations. We are going to use those techniques to show the resolution of some problems, but, as
we saw above, instead of negative numbers we will talk about negative labels.

Obviously, the aim of the presentation of the vector techniques is to show the underlying nature
of calculations for debts, gains, etc. It's clear that, for practical reasons, we can always work with
negative and positive labels, as "-4" or "+5", with the well known arithmetical rules.

For elementary problems as "John has 5 apples and looses 3. How many apples does John has?"
we have the following calculation, which corresponds to quantities of material objects:

5− 3 = 2

For those calculations we use natural numbers. And with them we can substract a smaller
number from a bigger number.

A problem arise when we want to perform, for example, the following calculation:

150− 200 =?

This calculation correponds, for example, to the following problem: John has $150 and buys a
machine for $200. What is his �nancial situation after that? This problem has no solution with
natural numbers. In fact John borrows from a bank $50 to buy the machine. After that, he is in a
�nancial situation of indebtedness with respect to the bank. And it in his bank account it is usually
represented by "-50".

As we saw below "negative numbers" were introduced to perform calculations about debts. And
John passed from a state of equilibrium with respect to the bank to state of indebtedness. And the
mathematical description of the situation is intrinsically geometric.

So that problem can not be solved with natural numbers. In fact it is a geometrical problem.
And we will solve it with the techniques of the euclidean vector space. Instead of the calculation
above, we will perform the following calculation:(

150
0

)
−
(
200
0

)
And this is the important point: we pass from a calculation involving natural numbers to a

calculation involving points and vectors.
The calculation

150− 200

is a schema and the vector equation will follow a part of his structure.
So, we pass from an arithmetical problem to a geometrical problem.
We will see more details about this calculation. The fact the he has, at the begining,$150 is

represented by a point in the line:

A = (150, 0)

Then he spends $150 and $50 (from the bank). So, �rst, we work now with a translation of A
of 150 units towards the left side. For this translation T, we use a vector v⃗. In that vector, the
component "-5" is a label, as we saw above:
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O⃗A =

(
150
0

)
v⃗ =

(
−150
0

)

So, in order to �nd Tv⃗(A) we calculate:

O⃗A+ v⃗ =

(
150
0

)
+

(
−150
0

)
=

(
0
0

)
So

Tv⃗(A) = (0, 0)

After that, he spends $50 from the bank. We use a new translation towards the left:

w⃗ =

(
−50
0

)
So, in order to �nd Tw⃗((0, 0)) we calculate::

(
0
0

)
+ w⃗ =

(
0
0

)
+

(
−50
0

)
=

(
−50
0

)
We arrive at a point B on the line

B = (−50, 0)

So �nally he has a debt of $50. As we have seen before, he actually has 50 units of debt and it
is represented also by the label "-50".

We have seen some arithmetical operations. For the multiplications, sometimes we have to
perform the calculation:

3× (−4)

Obviously, there is no solution with natural numbers. It will become a vector calculation. "3"
represents a point in the number line. Its distance to the origin is 3. We want to repeat or reproduce
4 times that distance, but in the opposit direction. This the description of an homothety H. The
label "-4" will be used as a scalar and we will have to perform the following vectorial calculation:

C = (3, 0)
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O⃗C =

(
3
0

)
λ = −4

O⃗Cλ =

(
3
0

)
(−4)

=

(
−12
0

)
We arrive at a point D on the number line:

D = (−12, 0)

So

Hλ(C) = (−12, 0)

But that result can be obtained also by performing a rotation of center O and an homothety
with λ = 4. This will be a rotation of 180° (see [Lako�Núñez2000]). So we have to calculate:

D = R(180◦) ◦H4(C)

5 Solving �rst-degree equations without natural solutions

Many equations can be solved using natural numbers. For example:

2x+ 4 = 10

Its solution is x = 3.
But if we have the following equation:

10 + 3x = 4

we see that we will have to solve 3x = 4 − 10. But 4 − 10 can not be calculated with natural
numbers.

So, with the schema of the �rst equation, we will have a vector equation. And the question will
be:

Starting from the point (10,0), which geometrical operation will lead to the point (4,0)?

So the solution won't be a number, but a geometrical operation.
As the addition appears in the �rst equation, we see that the operation involves a translation.

We also see that there is a factor 3, so the vector of the translation will undergo a homothety H3.
So we get the following vectorial equation:(

10
0

)
+ 3

(
x
0

)
=

(
4
0

)
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So, after the vectorial operations we get:

x⃗ =

(
−2
0

)
And the �nally the solution is the following translation:

TH3(x⃗)

So, to reach the point (4,0) from the point (10,0) we must to perform:

TH3(x⃗)((10, 0))

6 Solving an equation of degree 2 or higher with no natural solu-

tions

Many equations of degree 2 or higher can be solved just using natural numbers. For example:

2 + x2 = 11

In order to �nd its solution we must to calculate
√
9. So the solution is x = 3.

But when we work with negative labels and with vectors, we know that the multiplication of
two negative labels is a positive label. We know that (−3)(−3) = 9. So (−3) is also a solution of
that equation.

The underlying vector explanation is that we look for a geometrical operation, performed two
times on a basis vector, which will give us a translation vector. And that translation vector will
lead us from the point (2, 0) to the point (11, 0).

We get the following vectorial equation where X stands for an unknown geometrical operation:(
2
0

)
+X ◦X(

(
1
0

)
) =

(
11
0

)
So the basis vector

(
1
0

)
will undergo a homothety H3 and then rotation of 180◦. Our solution

is:

X = R(180◦) ◦H3

So the translation vector is obtained applying twice that solution to the basis vector:

X ◦X(

(
1
0

)
) = X(

(
−3
0

)
) =

(
9
0

)
We have sometimes equations as the following one:

1 + x+ x2 = 0

When we try to calculate the discriminant we �nd:

∆ = 12 − 4 · 1 · 1 = −3 < 0
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So there is no natural solution. But we can �nd a geometrical solution. And the question will
be:

Starting from the point (1,0), which geometrical operation X will lead to the origin O by following

the steps indicated by the vectorial equation?

We get the following vectorial equation where X stands for an unknown geometrical operation:(
1
0

)
+X(

(
1
0

)
) +X ◦X(

(
1
0

)
) =

(
0
0

)
Here are the steps: the vector basis

(
1
0

)
undergoes the operation X and we get a translation

vector used to reach a second point, then the same vector basis undergoes twice the operation X
and we get another translation vector, and from the second point we reach the origin 0.

We know, thanks of two centuries of studies about that kind of equations, that the solution is
linked to a composition of a translation and a homothety. But what we are showing here is that the
solution is not a complex number but a geometrical operation, and more precisely a composition of
a homothety and a rotation. So X has the following form, where λ > 0 and −180◦ ≤ θ ≤ 180◦:

X = Hλ ◦R(θ)

By using a matrix, we get:

X = λ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
So the vectorial equation becomes:(

1
0

)
+ λ

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
1
0

)
+ λ2

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)2(
1
0

)
=

(
0
0

)
So we get: (

1
0

)
+ λ

(
cos(θ)
sin(θ)

)
+ λ2

(
cos(2θ)
sin(2θ)

)
=

(
0
0

)
To continue, we must to solve a parametric equation:{

1 + λ cos(θ) + λ2 cos(2θ) = 0

λ sin(θ) + λ2 sin(2θ) = 0

Knowing that sin(2θ) = 2 sin(θ) cos(θ) and that cos(2θ) = 2 cos2(θ)− 1, we get:{
1 + λ cos(θ) + λ2(2 cos2(θ)− 1) = 0

λ sin(θ) + λ22 sin(θ) cos(θ) = 0

So, {
1 + λ cos(θ) + 2λ2 cos2(θ)− λ2 = 0

λ sin(θ) + 2λ2 sin(θ) cos(θ) = 0

Then, from the second equation we get:

λ sin(θ)(1 + 2λ cos(θ)) = 0
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So,looking for non-trivial solutions, we solve:

1 + 2λ cos(θ) = 0

Then, working with negative labels:

cos(θ) = − 1

2λ

We use that result in the �rst equation of the parametric equation and we get:

1 + λ(− 1

2λ
) + 2λ2(− 1

2λ
)2 − λ2 = 0

So,

1− 1

2
+

1

2
− λ2 = 0

So,

1− λ2 = 0

As λ > 0, the only solution is λ = 1. This means that the operation X we are looking for has
no homothety. It's just a rotation. and now we will �nd θ.

We saw above that

1 + 2λ cos(θ) = 0

So,

1 + 2 cos(θ) = 0

Then

cos(θ) = −1

2

So, the principal solutions are θ1 = 120◦ and θ2 = −120◦. And �nally we have 2 solutions for X:

X1 = R(120◦)

X2 = R(−120◦)

We can use also a analogue method to the completing the square. We take the vectorial equation
seen above: (

1
0

)
+X(

(
1
0

)
) +X ◦X(

(
1
0

)
) =

(
0
0

)
We rewrite it in the folowing way, knowing that X is a matrix:(

1
0

)
+X

(
1
0

)
+X2

(
1
0

)
=

(
0
0

)
Then we rewrite it as this to have perfect square trinomial, where I2 stands for the idetity matrix

of size 2:
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3

4

(
1
0

)
+

1

4
I2

(
1
0

)
+X

(
1
0

)
+X2

(
1
0

)
=

(
0
0

)
Thanks to the rules of distribution of matrix, we get:

3

4

(
1
0

)
+ (

1

2
I2 +X)2

(
1
0

)
=

(
0
0

)
So,

(
1

2
I2 +X)2

(
1
0

)
= −3

4

(
1
0

)
We rewrite it as:

(
1

2
I2 +X)2

(
1
0

)
=

3

4

(
−1
0

)
Let Y =

1

2
I2 +X, so we get the equation:

Y 2

(
1
0

)
=

3

4

(
−1
0

)
Thanks to what we have seen before, we know that Y must be a composition of a rotation and

a homothety, such that if it is applied twice to the vector basis

(
1
0

)
, we get

3

4

(
−1
0

)
. So this time

we need a rotation of 90◦ composed with a homothety H√
3

2

, and also a rotation of −90◦ with a

homothety H√
3

2

. So Y1 = H√
3

2

◦R(90◦).

So,

(
1

2
I2 +X1)

(
1
0

)
= H√

3

2

◦R(90◦)

(
1
0

)

And then,

X1

(
1
0

)
= −1

2

(
1
0

)
+H√

3

2

◦R(90◦)

(
1
0

)

After the rotation of 90◦ of the vector basis

(
1
0

)
, we can rewrite it as:

X1

(
1
0

)
= −1

2

(
1
0

)
+

√
3

2

(
0
1

)
Now we can describe the operation X1: it is the operation such that if it is aplied to the vector

basis

(
1
0

)
, we get the vector

−1

2√
3

2

.

As we know that X1 = Hλ ◦R(θ1), we will have:
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λ =

√
(−1

2
)2 + (

√
3

2
)2

θ1 = arctan(

√
3

2

−1

2

)

So we will have:

λ = 1

θ1 = 120◦)

With the solution X1 we can represent the path from the the point A(1, 0) to the origin O. It
can be also represented as a path from to origin to the origin, through the points A and B. This
path is constructed with the addition of the vectors we get in each step of the vector equation. See
the �gure 2

Figure 2: Representation of the path given by a solution to the vector equation

As we have seen before, there will be another solution X2 with:

λ = 1

θ1 = −120◦

As we have seen, negative numbers have a geometrical underlying structure. That is why
geometry appears again when we try to solve some polynomial equations.
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7 The vector nature of the formulas of Euler and De Moivre

7.1 The formula of De Moivre

As we have seen that, if we apply an operation X, which is a rotation, to the vector basis

(
1
0

)
, we

get:

X(

(
1
0

)
) = R(θ)(

(
1
0

)
) =

(
cos(θ)
sin(θ)

)
We can rewrite it as this:

X(

(
1
0

)
) = R(θ)(

(
1
0

)
) = cos(θ)

(
1
0

)
+ sin(θ)

(
0
1

)
Now, if we apply n times the operation X to that vector basis, we get:

Xn(

(
1
0

)
) = Rn(θ)(

(
1
0

)
) = cos(nθ)

(
1
0

)
+ sin(nθ)

(
0
1

)
And that corresponds to what De Moivre found with his formula:

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

In fact, the underlying nature of the complex number i is linked the vector basis

(
0
1

)
. The fact

of multiplying cos(θ) + i sin(θ) to itself n times produces n-1 rotations, and so a multiplication of θ
by n.

7.2 The formulas of Euler

We know that:

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + ...+

1

k!
xk + ...

This formula can be seen as a schema for a vector version. We will work with another function
called Expv. If it is applied to the result of an operation X, we get:

Expv(X(

(
1
0

)
)) =

(
1
0

)
+X(

(
1
0

)
) +

1

2!
X2(

(
1
0

)
) +

1

3!
X3(

(
1
0

)
) + ...

We will apply that function to X = Hλ ◦R(90◦)(

(
1
0

)
):
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Expv(Hλ ◦R(90◦)(

(
1
0

)
)) =

(
1
0

)
+Hλ ◦R(90◦)(

(
1
0

)
) +

1

2!
H2

λ ◦R2(90◦)(

(
1
0

)
) +

1

3!
H3

λ ◦R3(90◦)(

(
1
0

)
) + ...

=

(
1
0

)
+Hλ(

(
0
1

)
) +

1

2!
H2

λ(

(
−1
0

)
) +

1

3!
H3

λ(

(
0
−1

)
) +

1

4!
H4

λ(

(
1
0

)
) +

1

5!
H5

λ(

(
0
1

)
) + ...

=

(
1
0

)
+

(
0
λ

)
+

1

2!

(
−λ2

0

)
+

1

3!

(
0

−λ3

)
) +

1

4!

(
λ4

0

)
) +

1

5!

(
0
λ5

)
+

1

6!

(
−λ6

0

)
+ ...

=

(
1
0

)
+

(
0
λ

)
+

(
− 1

2!
λ2

0

)
+

(
0

− 1

3!
λ3

)
) +

( 1

4!
λ4

0

)
) +

(
0

1

5!
λ5

)
+

(
− 1

6!
λ6

0

)
+ ...

=

1− 1

2!
λ2 +

1

4!
λ4 − 1

6!
λ6 + ...

λ− 1

3!
λ3 +

1

5!
λ5 − ...


=

(
cos(λ)
sin(λ)

)
= cos(λ)

(
1
0

)
+ sin(λ)

(
0
1

)

So we have found the vector expression of what Euler found using ix:

eix = cos(x) + i sin(x)

As we saw before, the complex number i is linked the vector basis

(
0
1

)
.

And �naly, if λ = π, we get with the vector function :

Expv(Hπ ◦R(90◦)(

(
1
0

)
)) = cos(π)

(
1
0

)
+ sin(π)

(
0
1

)
= −1

(
1
0

)

And that corresponds to what Euler found with his formula:

eiπ = −1

8 The meaning of the other number line

As we have seen, at the beginning negative labels were created to perform calculations with gains
and debts. We have seen that those calculation are intrinsically geometric and we have found a
second axis which is also a number line. That number line can be used to describe the gains and
losses of a second agent. For exemple, John has $100 and his spends little by little his money by
buying objects in a store. When John losses money, the store gets the money. And there will be a
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Figure 3: Representation of the gains and losses of 2 agents

moment in which John has no more money, and the store could give him some credit. But in doing
that, the store losses money. That situation can be represented as in �gure 3:

The other axis can be used to represent the situation in pole vaulting. The pole vaulter has a
gain of height as he losses some meters from the standards above which there is the bar. When he
is on the other side of the standards, he has a negative position from the standards and he losses
height. That situation can be represented as in �gure 4 (in meters):

Figure 4: Representation of the gains and losses of distance and height
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9 Conclusion

So we have seen that there are no negative numbers nor complex numbers. There are actually
geometrical operations which are the solutions of certain arithmetical and polynomial problems.
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