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Abstract

In this paper we are going to study the polynomials whose arguments and coe�cients are
vectors in the Euclidean vector space together with the new operations de�ned in our previous
paper viXra:2510.0152. In order to prove the Fundamental Theorem of Algebra with topological
tools, we are going to de�ne the limits and derivatives with respect to vectors. We are going to
represent some values of the polynomials thanks to paths in the plane. We will see that for the
partial sums of the Taylor development linked to the exponential function, we get spiral paths
leading to the unit circle. We are going to �nd the zeros/roots and we are going to present a new
formulation of the Fundamental Theorem of Algebra, in the Euclidean vector space, with its
meaning linked to paths in the plane. We are going to adapt a proof made by Laurent Schwartz
with complex numbers. We are going to present also an adaptation of the algorithm of Kneser
in order to �nd the roots. We will show that the Fundamental Theorem of Algebra is de�nitely
geometrical. We will give also a link to a code source for GNU Octave for experiments with
operations and polynomials in this framework.

1 Introduction

According to its formulation linked to complex numbers, the Fundamental Theorem of Algebra
"states that every non-constant single-variable polynomial with complex coe�cients has at least
one complex root" (see [WikipediaF]). This theorem has been proved during the last two centuries
following several ways (see [RahmanSchmeisser2002]).

Many mathematicians have noted that the proofs need geometrical and even topological consid-
erations (see [WikipediaF]) and (see [RahmanSchmeisser2002], p. 62). So it is not really a theorem
of Algebra.

And in fact, we will show that it is de�nitely not a theorem of Algebra because, as we have
seen in our previous papers, the polynomials studied are actually geometrical. We will prove that
theorem with vectors and topological tools.

2 The zeros or the roots of the polynomials

The mathematical objects we are studying come from polynomial equations, as we have seen in our
�rst paper (see [Torres-Heredia2025A]). So we can have a polynomial of degree 4 as:
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humanities at the University of Geneva, and holds a M.A. He is also a self-taught mathematician.

1



⃗P (⃗ )x = a⃗0 + a⃗1 ∗ x⃗+ a⃗2 ∗ x⃗2 + a⃗3 ∗ x⃗3 + a⃗4 ∗ x⃗4

So P is also a vector and we can write also P⃗ . And we can �nd the zeros of this polynomial
with several methods analogous to those which were used for complex numbers. As we have seen in
our previous paper (see [Torres-Heredia2025O]), E2, together with the 2 operations + and ∗ de�ned
in this framework, is a �eld. So the rules and theorems (the Division Algorithm, the Remainder
Theorem, the Factor Theorem, etc.) for polynomials over a �eld apply here (see [Ayres1965], pp.
127-128).

For example, let P = x⃗2 + 2x⃗ +

(
1
0

)
. We can check that the vector −

(
1
0

)
is a zero of the

polynomial:

P (−
(
1
0

)
) = P (

(
−1
0

)
)

=

(
−1
0

)2

+ 2

(
−1
0

)
+

(
1
0

)
=

(
1
0

)
+

(
−2
0

)
+

(
1
0

)
=

(
0
0

)

So the polynomial P (x⃗) can be divided by x⃗− (−
(
1
0

)
):

− x⃗2 + 2x⃗+

(
1
0

)
x⃗+

(
1
0

)
x⃗2 + x⃗ x⃗+

(
1
0

)

− x⃗+

(
1
0

)
x⃗+

(
1
0

)
(
0
0

)
And so P (x⃗) = (x⃗ − (−

(
1
0

)
)) ∗ (x⃗ − (−

(
1
0

)
)) = (x⃗ +

(
1
0

)
) ∗ (x⃗ +

(
1
0

)
) = (x⃗ +

(
1
0

)
)2. And,

in fact, −
(
1
0

)
is a zero of P (x⃗) of the order 2.

3 The norm and some inequalities

As we are working in E2, we will use the euclidean norm de�ned in it. We will have, so:

∥
(
a
b

)
∥=

√
a2 + b2
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We wil have also the triangle inequality:

∥ x⃗+ y⃗ ∥⩽∥ x⃗ ∥ + ∥ y⃗ ∥

And the folowing equality, where λ is a number:

∥ λx⃗ ∥=| λ |∥ x⃗ ∥

Now, we are going to show that ∥ x⃗∗ y⃗ ∥=∥ x⃗ ∥∥ y⃗ ∥ with the operation ∗ de�ned in our previous
paper (see [Torres-Heredia2025O]). Firstly, we know that we consider each vector as the result of

the composition of a homothety and a rotation of the unit vector

(
1
0

)
. So we can rewrite, using

matrices:

x⃗ = λR(θ)

(
1
0

)
and

y⃗ = µR(φ)

(
1
0

)
We know that the result of the rotation of the unit vector

(
1
0

)
will be a vector with the same

norm. And this vector will be multiplied by λ, which corresponds to a homothety. So the last result
will have a norm of magnitude λ. We can write so:

∥ x⃗ ∥= λ

And, in the same way:

∥ y⃗ ∥= µ

And so:

∥ x⃗ ∥∥ y⃗ ∥= λµ

On the other hand, as we have seen also in our previous paper (see [Torres-Heredia2025O]):

x⃗ ∗ y⃗ = λµR(λ+ θ)

(
1
0

)
So,

∥ x⃗ ∗ y⃗ ∥= λµ

And �nally we conclude that:

∥ x⃗ ∗ y⃗ ∥=∥ x⃗ ∥∥ y⃗ ∥

We will use also the following inequality:

∥ x⃗+ y⃗ ∥≥∥ x⃗ ∥ − ∥ y⃗ ∥

It comes from the fact that:
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∥ x⃗ ∥ =∥ x⃗+ y⃗ − y⃗ ∥
≤∥ x⃗+ y⃗ ∥ + ∥ y⃗ ∥

So, we can write:

∥ x⃗+ y⃗ ∥≥∥ x⃗ ∥ − ∥ y⃗ ∥

4 Limits

In our previous paper we have seen also the de�nition of a function in this framework (see [Torres-Heredia2025O]).
Let f(x⃗) be a function de�ned in some deleted neighborhood of x⃗ = x⃗0. The vector l⃗ is the limit
of f(x⃗) as x⃗ approaches x⃗0, and we write limx⃗→x⃗0

f(x⃗) = l⃗, if and only if the following is true: for

every ε > 0 there exists a number δ > 0 with the property that ∥ f(x⃗) − l⃗ ∥< ε for all values of
f(x⃗) such that ∥ x⃗− x⃗0 ∥< δ and x⃗ ̸= x⃗0.

We are going to show an example which is an adaptation of what have been done until now
with complex numbers (see [Spiegel2009], p. 61). Let f(x⃗) = x⃗2. We are going to show that

lim
x⃗→

1
2

 f(x⃗) =

(
−3
4

)
.

Firstly, we are going to calculate

(
1
2

)2

:

(
1
2

)2

=

(
1
2

)
∗
(
1
2

)
=

(
1 · 1− 2 · 2
1 · 2 + 2 · 1

)
=

(
−3
4

)

Now, we are going to show that, given any ε > 0, we can �nd a number δ > 0 such that

∥ x⃗2 −
(
−3
4

)2

∥< ε whenever 0 <∥ x⃗−
(
−3
4

)
∥< δ.

If δ ⩽ 1, 0 <∥ x⃗−
(
−3
4

)
∥< δ implies that:
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∥ x⃗2 −
(
−3
4

)2

∥ =∥ (x⃗+

(
−3
4

)
) ∗ (x⃗−

(
−3
4

)
) ∥

=∥ x⃗−
(
−3
4

)
∥∥ x⃗+

(
−3
4

)
∥

< δ ∥ x⃗+

(
−3
4

)
∥

= δ ∥ x⃗−
(
−3
4

)
+ 2

(
−3
4

)
∥

< δ(∥ x⃗−
(
−3
4

)
∥ + ∥ 2

(
−3
4

)
∥)

= δ(∥ x⃗−
(
−3
4

)
∥ +2 ∥

(
−3
4

)
∥)

< δ(1 + 2 ∥
(
−3
4

)
∥)

We can take δ as 1 or
ε

1 + 2 ∥
(
−3
4

)
∥
, the smallest of the two numbers. So we have ∥ x⃗2 −

(
−3
4

)2

∥< ε whenever 0 <∥ x⃗−
(
−3
4

)
∥< δ.

For limits involving in�nity, we can follow also an analogous way to what has been done with
complex numbers. When the norm of a vector x⃗ approaches to in�nity, we say that the vector x⃗
approaches to in�nity.

Now, we are going to show that lim∥x⃗∥→∞ ∥ x⃗n ∥= ∞, where n is natural number and n ⩾ 1.
In the previous section we have seen that:

x⃗ = λR(θ)

(
1
0

)
and that

∥ x⃗ ∥= λ

So,

∥ x⃗n ∥ =∥ x⃗ ∥n

= λn

So, it is clear that when ∥ x⃗ ∥ approaches to in�nity, λ approaches to in�nity, and also λn

approaches to in�nity. So we have proved that lim∥x⃗∥→∞ ∥ x⃗n ∥= ∞.

Now, we are going to show that lim∥x⃗∥→∞ ∥

(
1
0

)
x⃗n

∥= 0.
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We recall that

(
1
0

)
= 1 ·R(0)

(
1
0

)
, where R is a rotation matrix.

And we know, thanks to the de�nition of the division in our previous paper (see [Torres-Heredia2025O]),
that:

(
1
0

)
x⃗n

=
1

λ
R(0− θ)

(
1
0

)
=

1

λn
R(−θ)

(
1
0

)

So,

∥

(
1
0

)
x⃗n

∥= 1

λn

So, it is clear that when ∥ x⃗ ∥ approaches to in�nity, λ approaches to in�nity, and
1

λn
approaches

to 0. So, we have proven that lim∥x⃗∥→∞ ∥

(
1
0

)
x⃗n

∥= 0.

Now, let's consider the following polynomial:

P (x⃗) = a⃗0 + a⃗1 ∗ x⃗+ a⃗2 ∗ x⃗2 + a⃗3 ∗ x⃗3 + a⃗4 ∗ x⃗4 + · · ·+ a⃗n ∗ x⃗n

We are going to show that lim∥x⃗∥→∞ ∥ P (x⃗) ∥= ∞.
Firstly,

∥ P (x⃗) ∥ =∥ a⃗n ∗ x⃗n ∗ ( a⃗0
a⃗n

∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+
a⃗2
a⃗n

∗

(
1
0

)
x⃗n−2

+
a⃗3
a⃗n

∗

(
1
0

)
x⃗n−3

+ · · ·+
(
1
0

)
) ∥

=∥ a⃗n ∗ x⃗n ∥ ∥ a⃗0
a⃗n

∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+
a⃗2
a⃗n

∗

(
1
0

)
x⃗n−2

+
a⃗3
a⃗n

∗

(
1
0

)
x⃗n−3

+ · · ·+
(
1
0

)
∥

=∥ a⃗n ∗ x⃗n ∥ ∥
(
1
0

)
+

a⃗0
a⃗n

∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+
a⃗2
a⃗n

∗

(
1
0

)
x⃗n−2

+
a⃗3
a⃗n

∗

(
1
0

)
x⃗n−3

+ · · ·+ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥

Now, we can write the following inequality involving one of those factors:

∥
(
1
0

)
+
a⃗0
a⃗n

∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+···+ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥≥∥
(
1
0

)
∥ − ∥ a⃗0

a⃗n
∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+···+ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥

On the other hand, we can write the following inequality involving the second term of the right
side of the last inequality:
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∥ a⃗0
a⃗n

∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+ · · ·+ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥≤∥ a⃗0
a⃗n

∗

(
1
0

)
x⃗n

∥ + ∥ a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

∥ + · · ·+ ∥ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥

As we have seen before, the norm of the type ∥ c⃗ ∗

(
1
0

)
x⃗k

∥ will approach to 0 as ∥ x⃗ ∥ aproaches

to in�nity. In fact, in each norm, the fraction is multiplied by a constant vector and the norm of
the result will approach also to 0.

So the right side of the last inequality will tend to 0. Then, we can �nd a number M > 0 such
that, for ∥ x⃗ ∥> M we have:

∥ a⃗0
a⃗n

∗

(
1
0

)
x⃗n

∥ + ∥ a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

∥ + · · ·+ ∥ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥< 1

2
∥
(
1
0

)
∥

So, taking an inequality seen above, we can write:

∥
(
1
0

)
+

a⃗0
a⃗n

∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+ · · ·+ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥≥∥
(
1
0

)
∥ −1

2
∥
(
1
0

)
∥

And so,

∥
(
1
0

)
+

a⃗0
a⃗n

∗

(
1
0

)
x⃗n

+
a⃗1
a⃗n

∗

(
1
0

)
x⃗n−1

+ · · ·+ ⃗an−1

a⃗n
∗

(
1
0

)
x⃗

∥≥ 1

2
∥
(
1
0

)
∥

So, for ∥ x⃗ ∥> M , we have:

∥ P (x⃗) ∥ ≥∥ a⃗n ∗ x⃗n ∥ 1

2
∥
(
1
0

)
∥

=∥ a⃗n ∗ x⃗n ∥ 1

2

=
1

2
∥ a⃗n ∥∥ x⃗n ∥

And so, the right side of the inequality approaches to in�nity as ∥ x⃗ ∥ aproaches to in�nity. So
we have proven that lim∥x⃗∥→∞ ∥ P (x⃗) ∥= ∞.

5 Basic derivatives

5.1 Derivatives of basic functions

In this framework we will de�ne the derivative of a function f at x⃗0 as this:

f ′(x⃗) = lim
∆x⃗→O⃗

f(x⃗+∆x⃗)− f(x⃗)

∆x⃗
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It is important to note the di�erence between this de�nition and the de�nition of the derivatives
in Di�erential Geometry, where the derivatives of vector functions are calculated with respect to
scalars. In this framework, the derivative of vector functions are calculated with respect to vectors.

For example,let f(x⃗) = x⃗2. The derivative at x⃗0 is:

f ′(x⃗0) = lim
∆x⃗→O⃗

f(x⃗0 +∆x⃗)− f(x⃗0)

∆x⃗

= lim
∆x⃗→O⃗

(x⃗0 +∆x⃗)2 − x⃗0
2

∆x⃗

= lim
∆x⃗→O⃗

x⃗0
2 + 2x⃗0 ∗∆x⃗+ (∆x⃗)2 − x⃗0

2

∆x⃗

= lim
∆x⃗→O⃗

2x⃗0 ∗∆x⃗+ (∆x⃗)2

∆x⃗

= lim
∆x⃗→O⃗

(2x⃗0 ∗∆x⃗+ (∆x⃗)2) ∗ (∆x⃗)−1

= lim
∆x⃗→O⃗

2x⃗0 ∗∆x⃗ ∗ (∆x⃗)−1 + (∆x⃗)2 ∗ (∆x⃗)−1

= lim
∆x⃗→O⃗

2x⃗0 +∆x⃗

= 2x⃗0

For the derivative of a constant, we will show �rstly that the result of the multiplication of a
vector x⃗ by O⃗ is O⃗:

x⃗ ∗ O⃗ =

(
x1
x2

)
∗
(
0
0

)
=

(
x1 ∗ 0− x2 ∗ 0
x1 ∗ 0 + x2 ∗ 0

)
=

(
0
0

)
= O⃗

Now, let f(x⃗) = c⃗. The derivative at x⃗0 is:
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f ′(x⃗0) = lim
∆x⃗→O⃗

f(x⃗0 +∆x⃗)− f(x⃗0)

∆x⃗

= lim
∆x⃗→O⃗

c⃗− c⃗

∆x⃗

= lim
∆x⃗→O⃗

O⃗

∆x⃗

= lim
∆x⃗→O⃗

O⃗ ∗ (∆x⃗)−1

= lim
∆x⃗→O⃗

O⃗

= O⃗

For f(x⃗) = x⃗, the derivative at x⃗0 is:

f ′(x⃗0) = lim
∆x⃗→O⃗

f(x⃗0 +∆x⃗)− f(x⃗0)

∆x⃗

= lim
∆x⃗→O⃗

x⃗0 +∆x⃗− x⃗0
∆x⃗

= lim
∆x⃗→O⃗

∆x⃗

∆x⃗

= lim
∆x⃗→O⃗

(
1
0

)
=

(
1
0

)

Now, let f(x⃗) = x⃗n, with n ≥ 2. The derivative at x⃗0 is:
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f ′(x⃗0) = lim
∆x⃗→O⃗

f(x⃗0 +∆x⃗)− f(x⃗0)

∆x⃗

= lim
∆x⃗→O⃗

(x⃗0 +∆x⃗)n − x⃗0
n

∆x⃗

= lim
∆x⃗→O⃗

Cn
0 x⃗0

n + Cn
1 x⃗0

n−1 ∗∆x⃗+ Cn
2 x⃗0

n−2 ∗ (∆x⃗)2 + · · ·+ Cn
k x⃗0

n−k ∗ (∆x⃗)k + · · ·+ Cn
n (∆x⃗)n − x⃗0

n

∆x⃗

= lim
∆x⃗→O⃗

Cn
1 x⃗0

n−1 ∗∆x⃗+ Cn
2 x⃗0

n−2 ∗ (∆x⃗)2 + · · ·+ Cn
k x⃗0

n−k ∗ (∆x⃗)k + · · ·+ Cn
n (∆x⃗)n

∆x⃗

= lim
∆x⃗→O⃗

(Cn
1 x⃗0

n−1 ∗∆x⃗+ Cn
2 x⃗0

n−2 ∗ (∆x⃗)2 + · · ·+ Cn
k x⃗0

n−k ∗ (∆x⃗)k + · · ·+ Cn
n (∆x⃗)n) ∗ (∆x⃗)−1

= lim
∆x⃗→O⃗

Cn
1 x⃗0

n−1 ∗∆x⃗ ∗ (∆x⃗)−1 + · · ·+ Cn
k x⃗0

n−k ∗ (∆x⃗)k ∗ (∆x⃗)−1 + · · ·+ Cn
n (∆x⃗)n ∗ (∆x⃗)−1

= lim
∆x⃗→O⃗

Cn
1 x⃗0

n−1 + Cn
2 x⃗0

n−2 ∗∆x⃗+ · · ·+ Cn
k x⃗0

n−k ∗ (∆x⃗)k−1 + · · ·+ Cn
n (∆x⃗)n−1

= nx⃗0
n−1

Now, let's see the constant multiple rule.
Let f(x⃗) = c⃗ ∗ g(x⃗). The derivative at x⃗0 is:

f ′(x⃗0) = lim
∆x⃗→O⃗

c⃗ ∗ g(x⃗0 +∆x⃗)− c⃗ ∗ g(x⃗0)
∆x⃗

= lim
∆x⃗→O⃗

c⃗ ∗ (g(x⃗0 +∆x⃗)− g(x⃗0))

∆x⃗

= lim
∆x⃗→O⃗

c⃗ ∗ g(x⃗0 +∆x⃗)− g(x⃗0)

∆x⃗

= c⃗ ∗ ( lim
∆x⃗→O⃗

g(x⃗0 +∆x⃗)− g(x⃗0)

∆x⃗
)

= c⃗ ∗ g′(x⃗0)

For f(x⃗) = g(x⃗) + h(x⃗), the derivative at x⃗0 is:

f ′(x⃗0) = lim
∆x⃗→O⃗

f(x⃗0 +∆x⃗)− f(x⃗0)

∆x⃗

= lim
∆x⃗→O⃗

g(x⃗0 +∆x⃗) + h(x⃗0 +∆x⃗)− (g(x⃗0) + h(x⃗0))

∆x⃗

= lim
∆x⃗→O⃗

g(x⃗0 +∆x⃗) + h(x⃗0 +∆x⃗)− g(x⃗0)− h(x⃗0)

∆x⃗

= lim
∆x⃗→O⃗

g(x⃗0 +∆x⃗)− g(x⃗0)

∆x⃗
+ lim

∆x⃗→O⃗

h(x⃗0 +∆x⃗)− h(x⃗0)

∆x⃗

= g′(x⃗0) + h′(x⃗0)
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5.2 The derivative of a polynomial

We will show an example. Let P (x⃗) =

(
1
1

)
+

(
2
1

)
∗ x⃗+

(
2
3

)
∗ x⃗3 +

(
1
3

)
∗ x⃗7 +

(
4
1

)
∗ x⃗9.

So,

P ′(x⃗) =

(
2
1

)
+ 3

(
2
3

)
∗ x⃗2 + 7

(
1
3

)
∗ x⃗6 + 9

(
4
1

)
∗ x⃗8

=

(
2
1

)
+

(
6
9

)
∗ x⃗6 +

(
7
21

)
∗ x⃗6 +

(
36
9

)
∗ x⃗8

6 The Taylor developments

6.1 In�nite series

So, with certain functions, we can develop in�nite series by using the formula of Taylor:

f(x⃗0 + h⃗) = f(x⃗0) + h⃗ ∗ f ′(x⃗0) +
h⃗2

2!
f ′′(x⃗0) + · · ·+ h⃗k

k!
f (k)(x⃗0) + · · ·

and

f(x⃗) = f(x⃗0) + f ′(x⃗0) ∗ (x⃗− x⃗0) +
f ′′(x⃗0)

2!
∗ (x⃗− x⃗0)

2 + · · ·+ f (k)(x⃗0)

k!
∗ (x⃗− x⃗0)

k + · · ·

6.2 The use of a Taylor development in R as a scheme and the spiral paths

As we have seen in our �rst paper (see [Torres-Heredia2025A]), we can use the Taylor development
of the real function ex as scheme for a vector development.

We know that:

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + ...+

1

k!
xk + ...

We worked with another function called Expv. If it is applied to the result of an operation X,
we get:

Expv(X(

(
1
0

)
)) =

(
1
0

)
+X(

(
1
0

)
) +

1

2!
X2(

(
1
0

)
) +

1

3!
X3(

(
1
0

)
) + ...

We applied that function to Hλ ◦R(90◦)(

(
1
0

)
) and we got:

Expv(Hλ◦R(90◦)(

(
1
0

)
)) =

(
1
0

)
+Hλ◦R(90◦)(

(
1
0

)
)+

1

2!
H2

λ◦R2(90◦)(

(
1
0

)
)+

1

3!
H3

λ◦R3(90◦)(

(
1
0

)
)+...

And �nally we got:

Expv(Hλ ◦R(90◦)(

(
1
0

)
)) = cos(λ)

(
1
0

)
+ sin(λ)

(
0
1

)
11



In fact, the partial sums of the Taylor development give us polynomials. And we represent
graphically the paths of those partial sums, we get spirals which lead to a point on the unit circle,
as we see in �gure 1:

Figure 1: Representation of the spiral paths leading to points on the unit circle

The blue path corresponds to λ =
π

4
and the green path corresponds to λ =

3π

4
You will �nd a source code for GNUOctave in order to generate those paths (see [Torres-Heredia2025S]).

In this code there is the implementation of some operations de�ned in our previous paper (see [Torres-Heredia2025O]).
It is important to note also that the mathematical objects we are studying can be expressed

with matrices, as we have seen in our previous papers. That's why we can use also GNU Octave in
order to work with matrices.

6.3 The Taylor development of a polynomial

We can get also the Taylor development of a polynomial. If we have the following polynomial:

12



P (x⃗) = a⃗0 + a⃗1 ∗ x⃗+ a⃗2 ∗ x⃗2 + a⃗3 ∗ x⃗3 + a⃗4 ∗ x⃗4 + · · ·+ a⃗n ∗ x⃗m

its Taylor development around x⃗0 will be:

P (x⃗) = P (x⃗0) + c⃗k ∗ (x⃗− x⃗0)
k + ⃗ck+1 ∗ (x⃗− x⃗0)

k+1 + · · ·+ c⃗m ∗ (x⃗− x⃗0)
m

We can show that there exists a su�ciently small number ρ such that, on the circle Γ centered
at the �nal point of x⃗0 with radius ρ, we have the following inequality:

∥ ⃗ck+1 ∗ (x⃗− x⃗0)
k+1 + · · ·+ c⃗m ∗ (x⃗− x⃗0)

m ∥<∥ c⃗k ∗ (x⃗− x⃗0)
k ∥=∥ c⃗k ∥ ρk

Firstly, because of the rules about the norm seen before, we know that:

∥ c⃗k ∗ (x⃗− x⃗0)
k ∥ =∥ c⃗k ∥∥ (x⃗− x⃗0)

k ∥
=∥ c⃗k ∥∥ (x⃗− x⃗0) ∥k

=∥ c⃗k ∥ ρk

So, we want to show that:

m∑
j=k+1

∥ c⃗j ∗ (x⃗− x⃗0)
j ∥<∥ c⃗k ∥ ρk

m∑
j=k+1

∥ c⃗j ∗ (x⃗− x⃗0)
j ∥<∥ c⃗k ∥ ρk ⇔

m∑
j=k+1

∥ c⃗j ∥∥ (x⃗− x⃗0)
j ∥<∥ c⃗k ∥ ρk

⇔
m∑

j=k+1

∥ c⃗j ∥∥ (x⃗− x⃗0) ∥j<∥ c⃗k ∥ ρk

⇔
m∑

j=k+1

∥ c⃗j ∥ ρj <∥ c⃗k ∥ ρk

⇔
m−k∑
j=1

∥ c⃗j ∥ ρj <∥ c⃗k ∥

Finally, ta su�ciently small number ρhe last inequality will be veri�ed with a su�ciently small
number ρ because c⃗k is a constant vector.

7 The Fundamental Theorem of Algebra

7.1 The formulation of the theorem in terms of paths

As we have seen in our �rst paper (see [Torres-Heredia2025A]), a polynomial P (x⃗) is a kind of
program which, for each x⃗0, allow us to go from the origin (0, 0) to the �nal point of the vector
P (x⃗0).
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Theorem 7.1. (Fundamental Theorem of Algebra) For every non-constant polynomial of degree m
having vectors as coe�cients and vector variables, there are m vectors r⃗k, 1 ≤ k ≤ m, such that the

path of the polynomial for each of those vectors r⃗k leads to the origin (0, 0).

Obviously, this formulation is equivalent to the one with roots: every non-constant polynomial
of degree m having vectors as coe�cients, has m vector roots.

7.2 The proof

This is an adaptation of a proof given by Laurent Schwartz (see [Schwartz1995], pp. 215-216). There
is also a quite similar proof, with the development of Taylor, in Wikipedia (see [WikipediaFit]).

We must to take into account the order of the roots. So if there is a root of the order 2, as we
have seen in an example before, this root must be counted twice.

Actually, it is enough to prove that the polynomial has at least a root x⃗0, for m ≥ 1. Indeed, if
we divide the polynomial by x⃗ − x⃗0, we get a polynomial of degree m − 1. And we can apply this
reasoning to this new polynomial. And then we prove the theorem by recurrence on the degree of
the polynomial.

So, let's consider the following polynomial:

P (x⃗) = a⃗0 + a⃗1 ∗ x⃗+ a⃗2 ∗ x⃗2 + a⃗3 ∗ x⃗3 + a⃗4 ∗ x⃗4 + · · ·+ a⃗n ∗ x⃗m

Let's suppose that it has no roots. So will show that there will be a contradiction,
We know that ∥ P (x⃗) ∥, as we have seen before, tends towards in�nity as ∥ x⃗ ∥ approaches

in�nity. So there is a number R such that, at the exterior of the circle of radius R centered at the
point (0, 0) of E2, we have:

∥ P (x⃗) ∥≥∥ P (

(
0
0

)
) ∥

We can consider ∥ P ∥ as a function on the compact set de�ned by ∥ x⃗ ∥≤ R. So, because of the
Extreme value theorem, ∥ P ∥ attains a minimum µ > 0. Let x⃗0 a vector such that ∥ P (x⃗0) ∥= µ.
We have, for ∥ x⃗ ∥≥ R :

∥ P (x⃗) ∥≥∥ P (

(
0
0

)
) ∥≥ µ

So, the inequality ∥ x⃗ ∥≥ µ is veri�ed for all x⃗. So µ is the minimum of the norm of P in E2.
Now, let's consider the Taylor development of P around x⃗0:

P (x⃗) = P (x⃗0) + c⃗k ∗ (x⃗− x⃗0)
k + ⃗ck+1 ∗ (x⃗− x⃗0)

k+1 + · · ·+ c⃗m ∗ (x⃗− x⃗0)
m

We know that ∥ P (x⃗0) ∥= µ. There exists a su�ciently small number ρ such that, on the circle
Γ centered at the �nal point of x⃗0 with radius ρ, we have the following inequality:

∥ ⃗ck+1 ∗ (x⃗− x⃗0)
k+1 + · · ·+ c⃗m ∗ (x⃗− x⃗0)

m ∥<∥ c⃗k ∗ (x⃗− x⃗0)
k ∥=∥ c⃗k ∥ ρk

We can suppose that ρ is such that ∥ c⃗k ∥ ρk < µ. Then, if the �nal point of x⃗ moves on the
circle Γ, then the �nal point of c⃗k ∗ (x⃗ − x⃗0)

k moves on all the circle centered at the origin with
radius ∥ c⃗k ∥ ρk < µ, and so the vector P (x⃗0)+ c⃗k ∗ (x⃗− x⃗0)

k moves on all the circle centered at the
�nal point of P (x⃗0) with a radius of ∥ c⃗k ∥ ρk, as so there is a vector x⃗1 such that the �nal point of
P (x⃗0) + c⃗k ∗ (x⃗1 − x⃗0)

k is on the segment between the origin and the �nal point of P (x⃗0). Then we
have:

14



∥ P (x⃗0) + c⃗k ∗ (x⃗1 − x⃗0)
k ∥= µ− ∥ c⃗k ∥ ρk

So we have the following majoration:

∥ P (x⃗1) ∥ ⩽∥ P (x⃗0) + c⃗k ∗ (x⃗1 − x⃗0)
k ∥ + ∥ ⃗ck+1 ∗ (x⃗− x⃗0)

k+1 + · · ·+ c⃗m ∗ (x⃗− x⃗0)
m ∥

< (µ− ∥ c⃗k ∥ ρk)+ ∥ c⃗k ∥ ρk

= µ

But the inequality ∥ P (x⃗1) ∥< µ contradicts the de�nition of x⃗0.

8 The algorithm of Kneser

In 1940, H. Kneser (see [Kneser1940]) developed an intuitionistic proof in order to �nd a root of
the polynomial (see also [RahmanSchmeisser2002], p. 63). His son M. Kneser improved the proof
(see [Kneser1981]).

This is an adaptation of the classsical algorithm of M. Kneser as it is brie�y repeated in the
introduction of a paper before the authors present a more detailed version and improve later that
method (see [GeuversWiedijkZwanenburg2001]). It is a constructive version of the simple proof
which leads to a contradiction from the fact that the polynomial P is minimal at x⃗0 with ∥ P (x⃗0) ∦=
0. As in the previous section, we begin with a non-constant polynomial:

P (x⃗) = a⃗0 + a⃗1 ∗ x⃗+ a⃗2 ∗ x⃗2 + a⃗3 ∗ x⃗3 + a⃗4 ∗ x⃗4 + · · ·+ a⃗n ∗ x⃗m

As we have seen before, P must have a minimum. This time we will assume that the minimum
is reached for x⃗ = O⃗. If the minimum is reached for another vector x⃗0, then we take the polynomial
Q(x⃗) = P (x⃗ + x⃗0). Now, let's assume that the minimum of ∥ P (x⃗) ∥ is not 0. For reasons similar
to what we have seen in the previous section, we can write:

P (x⃗) = c⃗0 + c⃗k ∗ x⃗k +O(x⃗k+1)

where c⃗k ̸= O⃗. So P (O⃗) = c⃗0 ̸= O⃗. So we can take:

x⃗ = ε k

√
− c⃗0
c⃗k

where ε > 0. And, if ε is small enough, the part O(x⃗k+1) will be negligible in comparison to the
rest. So we are going to get a vector x⃗ ̸= O⃗ such that:
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∥ P (x⃗) ∥ =∥ c⃗0 + c⃗k ∗ (ε k

√
− c⃗0
c⃗k

)k ∥

=∥ c⃗0 + c⃗k ∗ (εk(−
c⃗0
c⃗k

) ∥

=∥ c⃗0 + (εk(− c⃗0 ∗ c⃗k
c⃗k

) ∥

=∥ c⃗0 − εk c⃗0 ∥
=∥ c⃗0(1− εk) ∥
=| 1− εk |∥ c⃗0 ∥
= (1− εk) ∥ c⃗0 ∥
<∥ P (O⃗) ∥

So ∥ P (O⃗) ∥ is not a minimum and it contradicts what was supposed before.
And, actually we have found a vector which give us a path which �nishes closer to the point

(0, 0). So we can repeat that process which will give a Cauchy sequence and �nally we will �nd the
solution which gives the path �nishing at the point (0, 0).

As we read in (see [GeuversWiedijkZwanenburg2001]), this approach could be di�cult because
the choice of ε. ε should not be too small in order to reach the solution in a reasonable amount of
time (and the steps should be countable), and should be quite small in order for the part O(x⃗k+1)
to be negligible.

In order to improve that, instead of the representation in which c⃗k ∗ x⃗k is the smallest power
with a coe�cient di�erent from O⃗, we will take some appropriate k, non necessarily the smallest,
and write P (x⃗) as:

P (x⃗) = c⃗0 + c⃗k ∗ (x⃗− x⃗0)
k + the other terms

If we follow that way, ∥ P (x⃗) ∥<∥ P (O⃗) ∥ and even ∥ P (x⃗) ∥< q ∥ P (O⃗) ∥ for some �xed q < 1.
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9 Conclusion

So we have shown that the Fundamental Theorem of Algebra has an intrinsic geometrical nature.
We have shown that it is not a theorem of Algebra because, as we have seen in our previous papers,
the polynomials studied are actually geometrical. We have proved that theorem with vectors and
topological tools.

17



References

[Ahlfors1979] Ahlfors, L., Complex analysis. An introduction to the theory of analytic functions of

one complex variable., third edition, McGraw-Hill, New York, 1979.

[Ayres1965] Ayres, F. Jr., Theory and problems of modern algebra, Schaum's Outline Series,
McGraw-Hill Book Company, Inc., New York, 1965.

[Comm02] Comissions romandes de mathématiques, de physique et de chimie Formulaires et tables
- Mathématiques Physique Chimie, Editions du Tricorne, 2002.

[GeuversWiedijkZwanenburg2001] Geuvers, H., Wiedijk, F., Zwanenburg, J., A Constructive Proof

of the Fundamental Theorem of Algebra without Using the Rationals, In: Callaghan,
P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds) Types for Proofs and Programs.
TYPES 2000. Lecture Notes in Computer Science, vol 2277. Springer, Berlin, Heidelberg,
https://www.cs.ru.nl/ herman/PUBS/Types00-GeuversWiedijkZwanenburg.pdf

[Kneser1940] Kneser, H., Der Fundamentalsatz der Algebra und der Intuitionismus, Math Z 46,
287�302 (1940), https://doi.org/10.1007/BF01181442.

[Kneser1981] Kneser, M., Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz
der Algebra, Math Z 177, 285�287 (1981), https://doi.org/10.1007/BF01214206

[RahmanSchmeisser2002] Rahman, Q. I., Schmeisser, K. G., Analytic theory of polynomials, Oxford
University Press Inc., New York, 2002.

[Schwartz1995] Schwartz, L., Analyse I - Théorie des ensembles et topologie, avec la collaboration
de Zizi, K., Hermann, éditeurs des sciences et des arts, Paris, 1995.

[Spiegel2009] Spiegel, M., Lipschutz, S., Schiller, J. J., Spellman, D., Complex Variables with an

introduction to CONFORMAL MAPPING and its applications, Schaum's Outline Series,
The McGraw-Hill Companies, Inc., New York, 2009.

[Torres-Heredia2025A] Torres-Heredia Julca, J., Avoiding Negative Numbers and Complex Numbers
Thanks to the Study of the Geometrical Nature of Some Arithmetical and Polynomial

Problems, viXra:2508.0176, 2025, https://vixra.org/abs/2508.0176

[Torres-Heredia2025O] Torres-Heredia Julca, J., Operations, Analysis and Fractals Without Com-

plex Numbers, viXra:2510.0152, 2025, https://vixra.org/abs/2510.0152

[Torres-Heredia2025S] Torres-Heredia Julca, J., Source code for experiments, 2025.

[WikipediaC] Wikipedia, Complex number, page consulted on October 2025.

[WikipediaF] Wikipedia, Fundamental theorem of algebra, page consulted on November 2025.

[WikipediaFit] Wikipedia, Teorema fondamentale dell'algebra, page consulted on November 2025.

18

https://www.concept-global.net/en/mathematics/analysis_without_complex_numbers/source_code_for_experiments.html
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://it.wikipedia.org/wiki/Teorema_fondamentale_dell%27algebra

	Introduction
	The zeros or the roots of the polynomials
	The norm and some inequalities
	Limits
	Basic derivatives 
	Derivatives of basic functions
	The derivative of a polynomial

	The Taylor developments
	Infinite series
	The use of a Taylor development in R as a scheme and the spiral paths
	The Taylor development of a polynomial

	The Fundamental Theorem of Algebra
	The formulation of the theorem in terms of paths
	The proof

	The algorithm of Kneser
	Conclusion

